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Abstract
Each itcn%nerated b;?:;Genenlized Conjugate Gradient Method of Concus
and Golub-}i}-and Widlun is shown to be the best approximation t¢ the

solution from a certain affine subspace (although not from the *natural” affine
Krylov subspace). This property is used to improve the error bounds given by

Widlun:/lﬂ and Hageman, Luk, and Young
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1. Introduction

The Generalized Conjugate Gradient Method of Concus and Golub [1] and Widlund (3] is
an iterative method for solving a system of linear equations Az == b when the coefficient matrix
A is real and has positive definite symmetric part M == (A+A")/2:

LET 2/ BE GIVEN AND SET 2™ = 0.
FOR m == 0 STEP 1 UNTIL “CONVERGENCE" DO
SOLVE Mv™ == b — Az(™
COMPUTE! p_ = (Mv'™, ™)
IF m = 0 THEN
SET w,,, =1
ELSE
COMPUTE w,,,, = (I + ¢_/(pp_ @)
COMPUTE 2{™*V) == 2"V 4 oy (vf™) 4 2(m) — zlm-0))

Let A == M~N, whence ~N = (A—A')/2 is the skew.symmetric part of A, and let
K = M™'N. Then it can be shown that the iterate (™ lies in the affine Krylov subspace

29 + Span(vm, Kv('), K9, ., K"'"vm} = z(°)+$m
and is characterized by the Galerkin condition

(2, Ac™) == 0 forall z€ S, (1.1)
where ™ = z™—z (see [3]). Moreover,

2™ = z 4 p_(K)® (1.2)

where p,_ () is an even (odd) polynomial of degree at most m for m even (odd) and p (1) = I
(see [3]).

In this paper, we show that 2™ is the best approximation to z from a certain
m-dimensional affine subspace (but not from the affine Krylov subspace 2%+ $,) and use this
property to improve the error bounds given by Widlund (3] and Hageman, Luk, and Young [2].

! (4,2} denotes the Euclidean inner-product.
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Notation: (y,z),, denotes the M-inner product (My,z) and ||zj,, denotes the
corresponding norm. Note that

(Ky,2)yy = (Ny,2) = —(y,Nz) = —(My,M'Nz) = —~(y,K2),

so that K is skew-symmetric with respect to (-,-},, and (Kz,2),, == 0 for all z.

2. An Alternative Characterization

In this section, we show that the iterate z\™ generated by the Generalized Conjugate
Gradient Method is the best approximation to xz with respect to a certain m-dimensional affine
subspace, but pot with respect to the affine Krylov subspace :l:(°)+$,n (unless z™) = z). The
cases m even (= 2k) and m odd (== 2k+1) are treated separately.

Theorem 2.1: 2% ¢ z(°)+(I+K)S,,, and
{z, z(’*)-z)u = 0 for all 2z € (I4+K)S,,,
whence

2=zl = min {ly—zll, |y € L+(I+K)S,,} .

Proof:
Since p,(—1) = p, (1) == 1 (recall that p,, is even), p,,(1) can be written in the form

Po(p) = 1 + (1+p) g, () (1-p)
where m,,_.(p) is a polynomial of degree at most 2k~2. Therefore, by (1.2),
2 -z 4 & (I4K) my_(K) (I-K)®
- ¥ — (I+K) r,, (K
€ I+K)S,, .
If z € (I+K)S$,,, then z = (I+K)u for some u € §,, and

(2, 2™=z),, = (MI+K), ¥) = (u, Ad™) = 0

by the Galerkin condition (1.1).
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However, 21** is not the best approximation to z from ¥+ Sgs- To see this, note that
(o), 2-2), = — ((I-K)eY, ),
— ‘(“))M + (H—c®), ‘m))u + (K, Pa K)c('))u .

By Theorem 2.1, V) e Z(3)_,(0) ¢ (I+K)S,, and the second term vanishes. Since K is
skew-symmetric with respect to (-,-),, and p,, is even, the third term also vanishes. Therefore,
e s, but

2%

("'(.)’ 3(2”"3)“ - - (e(“)r c(u))u % 0,
unless 2% = 7.
Theorem 2.3: z(***V ¢ z(°)+v(°)+(I+K)Su +1 and

(z, 2%*-z),, = 0  forall : € ([+K)S,,,,,
whence

J® =z, = min {fy=zly |y € LOHOHIHKIS,,,) -

Proof:

Since p,, . (1) = 1 and p,,  (—1) = —p,, (1) == —1 (recall that p,, , is odd), p,, . () can
be written in the form

Pan(pi = p+ (1+p) my_ () (1-p)
where 7,, (1) is an odd polynomial of degree at most 2k—1. Therefore, by (1.2),
) = 2 4 K 4 (I+K) 7, (K) (I-K)e®
- 0 - (~K)" - (I+K) x,,_(KW®
= 2 + & ~ (J+K) m,_ (KW
€ 24+ O+(1+K)S,,,, .
If z € (I+K)S$,, ., then z = (I+K)u for some u € i, , and g L” : ’

(2, 2**V=z),, = (MK, ) = (4, A%*) = 0 e
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by the Galerkin condition (1.1). (m]
Again, z3*V is 5ot the best approximation to z from 2+ Ses+r- To see this, note that
(v, ,(ﬂ*l)_,)u - — ((I-K)"Y), ,(lk-ﬂ))u
- (c(uﬂ)’ c(uﬂ))u - (c(uﬂ)__ K¥, e(sl:-u))”
- (c('), Pt K),('))y .

By Theorem 2.2, el®*+D—K® = Z#+1)_50_¢l® ¢ (1+K)S,, and the second term vanishes.
Since K is skew-symmetric with respect to (-,-),, and p,, _, is odd, the third term also vanishes.
Therefore, e Su “ but

(0O, 2B _g) o (lBRH) 4D g g

unless 2% = 2,

3. Error Bounds

In this section, we use the best approximat.on property of the iterates (z("')} to prove error
bounds for the Generalized Conjugate Gradient Method.

Theorem 3.1:

ha™=zll,y < lgn(KX2"=2)l,

for any real polynomial g,(u) of degree at most m satisfying ¢, (1) = 1 and g, (~1) = (-1)".

Proof:

Let ym 2z + g, (K )¢®. Then it can be shown that y € z(°)+(I+K )S,, if m is even (see the
first part of the proof of Theorem 2.1) and that y € z(”+v’~")+(l+K)$ﬂ if m is odd (see the first
part of the proof of Theorem 2.2). Therefore, using either Theorem 2.1 or Theorem 2.2,

N2l < ly-zlly = lo (KXO-2)l, .
a

Let o(K) denote the spectrum of K. Since K is skew-symmetric with respect to (-,},,. it
can be shown that
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Rep=0, |m | < K, = A
for any u € oK), and that
Tl = max |q. (s
fla (KM, yemﬂl m(#)|
for any real polynomial g, ().
Corollary 3.2:

||z("' -zll,, < 2

(o)_
= R+ R

where R(A) = 47! + VA1

Proof:

Let g, (n) = Tn(M"'p)/T'_(M") where T, (2) is the m'* Chebyshev polynomial. Since
T,(z2) is even (odd) when m is even (odd), q,.(n) is a real polynomial which satisfies the conditions
of Theorem 3.1 so that

Ne™=zlly, < U (ENE=2Nly < NgnlBly 22,

But

[T, (547 )i 1
- L <
a0 = &0 A = A

since =1 < iA™'p < +1 for all p € o(K) and |T, (2)] < 1for =1 £ z < +1. Moreover, it can
be shown that

T (A7) = 5 [RA™ + R
Therefore, since R(A) > 1,

M_gl < 2 o_
¥ < T R

o

Hageman, Luk, and Young [2] proved Corollary 3.2 for m even by observing that the even
iterates can also be generated by applying conjugate gradient acceleration to a certain
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symmetrizable “double” method. Widlund [3] proved somewhat weaker bounds for general m
using a standard argument for Galerkin methods.

The best approximation property and the nesting of the subspaces {S_} guarantees that
{1y ) and {9y ) are both monotone decreasing. Widlund {3] gives a direct proof. The
following result shows that both sequences must converge at the same rate, contradicting the
experimental results reported in [3].

Corollary 3.3:
A g, < -z, < AN™V=z],,  forallm > 1.

Proof:
It suffices to prove the right-hand inequality. Since g, (p) = pp,_ (1) satisfies the
conditions of Theorem 3.1,

lz™—-zll,, < lg (KX=-2),
< “K“u “Pm_l(K)‘(.)“u

- A uz("'")—zllu .
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